
2022년 6월 한국소프트웨어감정평가학회 논문지 제18권 제1호

- 11 -

1. Introduction

Software completeness appraisal is to

determine functional problems, reliability

problems of processing results performed in

unit tasks, operational problems, etc. for the

software system developed by consignment. It

is performed by analyzing various documents

such as target software, proposal, development

contract, system blueprint, and development

work specification, and at the same time

verifying whether it operates normally on the

actual system [1]. From a qualitative point of

view, the completion of software can be said to

be a state in which not only functional

requirements but also non-functional require-

ments are satisfied. Even if the developed

software satisfies all the functional

requirements, if the non-functional require-

ments are not satisfied, the degree of

completeness does not reach 100%.

논문 2022-1-2 http://dx.doi.org/10.29056/jsav.2022.06.02

An Integration Test Scenario-Based Approach to
Appraise the Completeness of ERP Systems

Yukyong Kim*†

Abstract

From a qualitative point of view, the completion of software can be said to be a state in which not
only functional requirements but also non-functional requirements are satisfied. Even if the developed
software satisfies all the functional requirements, if the non-functional requirements are not satisfied, the
degree of completeness does not reach 100%. In particular, in the case of establishing a system that
integrates management resources across all areas of the business process into one, such as the ERP
system, it is very important to evaluate not only the unit function but also the overall business process
integration. In this case, it is necessary to judge the level of completion from an integrated point of view.
Scenario-based test case design can find functional flaws for requirements, so it can be applied to various
fields such as automobile international standards, railways, and national defense. In this paper, we will
discuss an approach that can derive test cases and calculate the completeness by applying a
scenario-based technique for software completeness assessment. This paper presents a method to apply a
scenario-based test technique to software completeness appraisal on enterprise-wide business processes
such as ERP. The characteristics of the ERP system will be reviewed, and the applicability of the
scenario-based assessment method and its limitations will be discussed.

keywords : software testing, scenario, usecase, completeness, ERP systems

* Division of Basic Engineering, Sookmyung
Women’s University
†Corresponding author: Yukyong Kim
(email: ykim.be@sookmyung.ac.kr)
Submitted: 2022.05.22. Accepted: 2022.06.08.
Confirmed: 2022.06.20.

http://dx.doi.org/10.29056/jsav.2022.06.02


An Integration Test Scenario-Based Approach to Appraise the Completeness of ERP Systems

- 12 -

In the process of software development,

functional and non-functional requirements

should be included in the requirements

specification prepared by agreement between

the owner and the developer. Even if the

requirements are vaguely described and there

is a difference of opinion between the client

and the developer, it is possible to evaluate

through related data, similar cases, and expert

knowledge of the appraiser, but objective

grounds for the requirements must be

presented [2]. In particular, in the case of

establishing a system that integrates

management resources across all areas of the

business process into one, such as the ERP

system, it is very important to evaluate not

only the unit function but also the overall

business process integration. In this case, it is

necessary to judge the level of completion from

an integrated point of view.

In this paper, we propose a method to apply

a scenario-based test technique to software

completeness appraisal on enterprise-wide

business processes such as ERP. The

characteristics of the ERP system will be

reviewed, and the applicability of the scenario-

based test method and its limitations will be

discussed.

The structure of this paper is as follows.

First, Section 2 describes the characteristics of

the ERP system and the scenario-based testing

technique, and Section 3 describes the

scenario-based test case design method.

Section 4 presents an approach for applying

the test scenario to the appraisal of software

completeness. A conclusion is drawn in Section 5.

2. Related Work

2.1 Characteristics of the ERP system

ERP systems inevitably accompany the

innovation of the business process as it

improves the current process according to the

advanced process. Therefore, a different

approach from the existing information systems

is required to appraise ERP software. In the

business aspect, ERP has a single point of

failure problem in which one failure leads to

the failure of the entire system because all

data and transaction processing of an

organization exist within one application.

Therefore, it is necessary to judge the

completeness from an integrated point of view

[3][4].

As a generic functionality, completeness is a

characteristic that becomes unrealistic if

pushed to the extreme. A generic system that

would work for all types of companies and

industries are actually very difficult, if not

impossible, to design. Depending on the nature

of their physical flows, manufacturing

companies may have ERP requirements. The

type of ERP system can be developed taking

into account the specifics of the organizations

and industries that actually adopt it. As ERP

systems add or eliminate specific elements for

the organization, the configuration creates

distinct product types and makes standard or

common descriptions very difficult [5].

Since this characteristic of ERP increases

the difficulty of modification, the weight for the



2022년 6월 한국소프트웨어감정평가학회 논문지 제18권 제1호

- 13 -

implementation of the modification request

should not be set in the same way as in the

existing information systems.

2.2 Scenario-Based software testing

The international standard ISO/IEC 29119

classifies software testing design techniques

into specification-based testing, structure-based

testing and experience-based testing [6]. The

specification-based technique designs test cases

based on user requirements or specifications

and models. The structure-based technique

designs test cases using the logic information

of the program based on the source code. The

experience-based technique designs test cases

based on the knowledge and experience of the

person conducting the test. Specification-based

testing includes equivalence partitioning,

boundary value analysis, state transition

testing, and scenario-based testing.

Scenario-based techniques are testing based on

scenarios generated by user requirements.

Scenario-based testing designs test cases

based on business scenarios or process flows.

Scenario-based testing performed based on

requirements is being applied in various fields

because requirements-based testing is required

not only in ISO 26262, the international

standard for automobiles, but also in nuclear

instrument controllers, railroads, and defense

fields.

A scenario describes the functionality and

behavior of software from a user-centered

point of view, and is written in a way that

lists the interactions between users and

systems. For example, a scenario for an

ATM's cash withdrawal function can be

written as the following Table 1.

Scenario : Withdraw cash
Brief : This describes how a bank customer uses
an ATM to withdraw money from a bank
account.
Basic flow :
1. The customer inserts their bank card into the
card reader on the ATM.

2. The system reads the bank card information
from the card and check the validity of the
bank card.

3. The system displays the message 'Please
enter your PIN number' on the screen.

4. The customer enters their pin number.
5. The system verifies the match of PIN number
with the system record.

6. The system displays the service options that
are currently available on the machine.

7. The customer selects to withdraw cash.
8. The system prompts for the amount to be
withdrawn by displaying the list of standard
withdrawal amounts.

9. The customer enters an amount to be
withdrawn.

10. The system ejects the customer’s bank card.
11. The system dispenses the requested amount
of cash to the customer.

12. The system records a transaction log entry
for the withdrawal and returns to the initial
screen.

Table 1. Sample scenario for ATM

3. Designing Scenario-Based Test 

Cases

Scenario-based testing shows that scenarios

can be used not only to derive and document



An Integration Test Scenario-Based Approach to Appraise the Completeness of ERP Systems

- 14 -

user requirements, to describe functionality, but

also to validate systems during the software

development process [7]. A typical form of a

scenario is a use case. Use cases are intended

to define interactions with users, and are the

basis for the design and implementation

phases, and are also used to create test cases.

Because use cases describe pre- and

post-conditions and performance requirements

together, information necessary for testing can

be provided, and practical and specific test

cases can be derived. In addition to use cases,

scenario-based testing can use models such as

business workflow or BPMN(Business Process

modelling Notation)s expressing procedures for

executing business tasks. Scenario-based

testing includes both normal and abnormal

flows.

As a running example, we consider the use

case “Withdraw cash”. This use case describes

how a bank customer uses an ATM to

withdraw money from a bank account. Table 1

presents basic flow of events of the use case.

Use case specification includes alternative

flows. An alternative flow describes a use case

scenario other than the basic flow that results

in a user completing his or her goal. It is often

considered to be an optional flow and implies

that the user has chosen to take an alternative

path through the system. For example, at the

step 3 of basic flow in Table 1, the bank

system can report that the bank card

information is not valid. Then the system

reports to the customer that the card could not

be read and resume the basic flow at use case

ends.

The scenario-based test case design process

is as follows. First, the function set and

configuration items are identified, and then test

conditions are derived. After defining the

scenario flow, design the test case. For

example, the set of functions and components

identified for the cash withdrawal function of

an ATM are shown in Fig. 1.

Fig. 1. Derived features and configuration items

Then, test conditions are derived for the

defined functions and configuration items. For

example, if it is a normal withdrawal scenario

of cash withdrawal, the scenario flow is S1.1,

S2.1, S3, S4.1, S5.1, S6, S7, S8, and S9. Several

possible scenario flows can be created from

test conditions, and test cases can be designed

based on these derived scenario flows as

shown in Fig. 2. We design eleven test cases

for all scenarios in the “Withdrawal cash” use

case.



2022년 6월 한국소프트웨어감정평가학회 논문지 제18권 제1호

- 15 -

Poor test scenarios reduce test quality.

Therefore, it is necessary to create a test

scenario based on the business process and to

establish the main flow of the test scenario by

the ordering company and the developer.

Fig. 2. Designing test cases

4. Completeness Appraisal using 

scenario-based testing techniques

When a test case is designed and executed

based on a business scenario such as a use

case, it is useful to discover functional flaws in

the actual business process because the use

case describes a function-oriented processing

flow. In a complex system such as an ERP

system, since the scenario itself is described in

natural language and may not be suitable for

test case design, a method of formalizing the

scenario using a model such as an activity

diagram or an event diagram can be used. [In

[8], scenarios are derived using the UML state

chart diagram.

However, it takes much more time and effort

to introduce a formalized process for evaluating

the completeness of software based on an

enterprise-wide business process such as ERP.

In this paper, instead of applying a formalized

technique, we verify the test cases from the

interview with the developer. It can

complement the integration test scenarios.

The purpose of the completeness assessment

is to verify that the system to be evaluated

fully reflects the customer's requirements and

to verify the integrity of the system in the

future [9]. Since the completeness evaluation is

generally performed on the developed software

product after the software development is

completed or the product is delivered,

system-level testing is required. If the

scenario-based test technique is applied, the

completeness can be calculated by the ratio of

the passed scenarios to the entire scenario,

which can be considered as a kind of

functional coverage.

However, this calculation of completeness

does not reflect the characteristics of the

system because all scenarios and test cases are

treated equally. As with the ERP system, all

data and transaction processing of an

organization exist within one application, and

there is a high probability that a failure in one

place leads to failure of the whole. In

particular, the weights should not be assigned

in the same way as in the existing information

system to the difficulty of modification. In the

ERP system, since the entire system is

organically connected, the range of influence



An Integration Test Scenario-Based Approach to Appraise the Completeness of ERP Systems

- 16 -

for the change increases, which increases the

cost and effort.

This is because even if a low-complexity

function is modified, the difficulty of the

modification itself can be very high. Therefore,

in the case of an ERP system, the weight

scaling of a general information system may

not be suitable for an integrated completeness

determination.

In order to calculate the weight, the

complexity of the change should be considered.

In the case of the ERP system, one unit task

can be linked with other systems in a complex

way, so weights can be assigned according to

the range of influence.

One possible option is to use a requirement

system diagram. Fig. 3 is an example of a

requirement system diagram. By using this,

weights are separately applied according to the

level of the main function, and for changes

with a large impact range, additional weights

can be given according to the number of unit

tasks within the scope of the change.

Fig. 3. An example of requirement system diagram

5. Conclusions

The scenario-based test technique is one

method of performing a test by designing a

test case to verify the software function using

a scenario. Scenario-based test case design can

find functional flaws for requirements, so it

can be applied to various fields such as

automobile international standards, railways,

and national defense. In this paper, we

discussed an approach that can derive test

cases and calculate the completeness by

applying a scenario-based test technique for

software completeness appraisal.

References

[1] S. Hong, S. H. Park, M. S. Jeon, Y. H.
Kim, J. Bae, “A Study of Software
completeness appraisal and development
cost calculation analysis”, Proceedings of
KMIS International Conference, pp.426-432,
2017.

[2] K-T Kwon, “Overview of the Appraisal
of Completeness for Software”, Journal of
Software Assessment and Valuation, Vol.
11, No. 2, pp. 1-8, 2015. available on :
http://i3.or.kr/html/paper/2015-2/(1)2015-2.p
df

[3] S. G. Yi, “An Analysis of the Importance
of the Success Factors in Operation Stage
of ERP System”, Journal Of Service
Research and Studies, Vol. 6, No. 4, pp.
35-45, 2016. DOI : https://doi.org/10.18807/
jsrs.2016.6.4.035

[4] J. S. AlGhamdi, and Z. Muzaffar, “Metric
suite for assuring the quality of ERP
implementation and development”,



2022년 6월 한국소프트웨어감정평가학회 논문지 제18권 제1호

- 17 -

Proceedings of the International
Conference on Advanced Communications
Technology, pp. 1348-1352, 2011.
https://ieeexplore.ieee.org/document/5746054

[5] S. Uwizeyemungu, L. Raymond, “Essential
characteristics of an ERP system :
conceptualization and operationalization”,
Journal of Information and Organizational
Sciences, Vol. 29, No. 2, pp.69-81, 2021.
URI: https://hrcak.srce.hr/file/116377

[6] T. H. Im, “Software Testing International
Standard Status(ISO/IEC/IEEE 29119)”,
TTA Journal, Vol. 167, pp. 96-101, 2016.
https://www.tta.or.kr/data/androReport/
ttaJnal/167-5-3.pdf

[7] K. Kakimoto, H. Umeda, K. Sogawa, and
Y. Ueda, “A Scenario-based Approach;
Assuring Effect of Software Product”,
Procedia Computer Science, Vol. 126, pp.
646-655, 2018. DOI : https://doi.org/
10.1016/j.procs.2018.07.299

[8] Y. Lee, J. Lee, N. Kim, D. H. Lee, H. In,
“ A Elicitation Method an Integration Test
Scenario Using Test Design Technique”,
Proceedings of the Korean Information
Science Society Conference, Vol. 39, No.
1(B), pp. 229-231, 2012. 1598-5164(pISSN)

[9] K-T Kwon, “Software of Completeness
based on Testing Technique”, Journal of
Software Assessment and Valuation, Vol.
6, No. 2, pp. 25-33, 2010. http://
i3.or.kr/html/paper/2010-2/(3)2010-2.pdf

Authors

Yukyong Kim

2001. Ph.D. degree in Computer Science
from Sookmyung Women’s
University

2005-2006. Postdoc. in Dept. of Computer
Science at UC Davis

2006-2015. Research professor, Dept. of
Computer Science and Engineering
at Hanyang University, ERICA

2018-present. Professor, Division of Basic
Engineering at Sookmyung
Women’s University

<Research interests> Software Quality
Metrics, Quality of Services, Trust
Evaluation for IoT services, Cloud-native
applications, and Web services.


