
2021년 12월 한국소프트웨어감정평가학회 논문지 제17권 제2호

- 125 -

1. Introduction

Cross-site scripting (XSS) is one of the

most notorious threats to the internet world

today. It occurs when the validation of user

input in the web application is improper, thus

resulting in the unintended interpretation of the

inputs by the browser as scripts or code. The

presence of these misinterpreted codes is a

menace because it has an impact on causing

disruptions to internet usage such as denial of

service and information theft that may even

contemptuously affect the users' privacy or the

good name of their organization. In the 2017

OWASP report, XSS is ranked the third top

threat, and remains practically unchanged from

the year 2013 to 2017. The chart on XSS

yearly vulnerability survey [1], has it that

despite the number has somewhat dwindled

from 1105 in 2014 to 495 in 2016, but a new

surge to 855 in 2017 is an upset. In addition,

other reports of rampant XSS vulnerabilities in

web applications clearly show that they are an

issue still yet to be dissolved [2].

There are several methods used to help

prevent XSS in web applications. Among them

is by performing automatic code review using

static analysis security testing (SAST) tools

논문 2021-2-14 http://dx.doi.org/10.29056/jsav.2021.12.14

Static Analysis Tools Against Cross-site Scripting Vulnerabilities
in Web Applications : An Analysis

Nurul Atiqah Abu Talib*, Kyung-Goo Doh*†

Abstract

Reports of rampant cross-site scripting (XSS) vulnerabilities raise growing concerns on the effectiveness
of current Static Analysis Security Testing (SAST) tools as an internet security device. Attentive to these
concerns, this study aims to examine seven open-source SAST tools in order to account for their capabilities
in detecting XSS vulnerabilities in PHP applications and to determine their performance in terms of
effectiveness and analysis runtime. The representative tools - categorized as either text-based or graph-based
analysis tools - were all test-run using real-world PHP applications with known XSS vulnerabilities. The
collected vulnerability detection reports of each tool were analyzed with the aid of PhpStorm's data flow
analyzer. It is observed that the detection rates of the tools calculated from the total vulnerabilities in the
applications can be as high as 0.968 and as low as 0.006. Furthermore, the tools took an average of less than
a minute to complete an analysis. Notably, their runtime is independent of their analysis type.

keywords : Cross-site scripting, Open-source Static Analysis Security Testing Tools, Detection

* Department of Computer Science and
Engineering, Hanyang University ERICA

†Corresponding Author :
Kyung-Goo Doh(email: doh@hanyang.ac.kr)
Submitted: 2021.11.30. Accepted: 2021.12.11.
Confirmed: 2021.12.20.

http://dx.doi.org/10.29056/jsav.2021.12.14

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

- 126 -

on server-side code before the application is

deployed. Albeit, getting an effective SAST

tool for web applications remains an issue. By

common rule, to reach an accurate result from

a tool is to generally require more

computational work.

However, having more computational work

in a task would imply a longer time to

complete a job of an analysis. For all it

matters, a low total runtime of a web

application is as critical as its effective security

solutions that experts need to consider when

designing a tool. A tool that lacks this

specification on its performance would risk

getting abandoned by the users.

It is, therefore, important that the issue of

performance of a security tool be addressed

accordingly through sound research. This is to

say, the effectiveness of SAST tools and their

runtime are pertinent connections to be viewed

with scrutiny in a specific study. Taking up

the issue, this study seeks to survey the

applications of current SAST tools used to

prevent XSS and to analyze the circumstances

in which each technique and the size of the

target application affects their performance.

This study is set on four main objectives:

(1) to account for the current SAST tools to

detect XSS vulnerabilities in PHP applications,

(2) to determine the tools’ sensitivity, (3) to

determine the effectiveness (i.e., precision and

recall) of each SAST tool running as a

security device, (4) to compare the analysis

time taken by each tool to complete a detection

task, and (5) to relate the tools' effectiveness

performance to the analysis time performance

in respect to their vulnerability search type.

More significantly, the research is an attempt

to initiate a comprehensive analysis of SAST

tools on the performance of XSS detection

effectiveness and analysis run time.

In this study, we examine seven current

open-source or free SAST tools to determine

the extent of their ability to detect XSS

vulnerabilities in PHP applications. These

seven SAST tools are: phpcs-security-audit

(PHPCS), PhpSAFE, Pixy, RIPS,

VisualCodeGrepper (VCG), Web Application

Protection (WAP), and Yet Another Source

Code Analyzer (YASCA). Each of these tools

would be run consecutively to firstly, determine

the effectiveness (i.e., precision and recall) in

XSS detection and to secondly, assess the

runtime performance when analyzing the test

cases. More specifically, the study is to answer

5 research questions: (1) do the tools'

implementation decisions include

sensitive-based analysis?, (2) are the tools’

XSS vulnerability detections true or false?, (3)

what is the rate that a tool may miss true

vulnerabilities?, (4) how do the tools perform

in terms of precision, recall and F-Score?, and

(5) how long do the tools take to complete

analyses on test cases?.

2. Open-source Static Analysis Security

Testing Tools

Manual inspection of vulnerability present in

web applications is known to be error-prone

and time-consuming task. To overcome, the

2021년 12월 한국소프트웨어감정평가학회 논문지 제17권 제2호

- 127 -

use of automated technique of static analysis

to validate server-side code before its output

program is supplied to other entities such as

the browser, is a way to go. Incidentally, the

technique helps to scrutinize insufficient input

validation in the code that causes XSS

vulnerabilities.

This section provides a brief overview of the

seven widely used open-source SAST tools of

our study [6] to perform XSS vulnerability

checks in PHP applications. Table 1 shows the

tools that we categorize in terms of their main

method (type) of vulnerability search, which

we refer to as either text-based (TBA) or

graph-based analysis (GBA) tools.

Tool
Vuln.
Search
Type

Language
Used

Year
Crea
ted

Last
Update

PHPCS Text PHP 2013 2017

VCG Text Visual Basic 2015 2016

YASCA Text PHP 2008 2010

PhpSAFE Graph PHP 2013 2016

Pixy Graph Java 2006 2014

RIPS Graph PHP 2010 2017

WAP Graph Java 2014 2015

Table 1. Overview of Static Analysis Security
Testing Tools For PHP Applications

Under Study

phpcs-security-audit [8] is a tool that

utilizes a set of PHP_CodeSniffer (PHPCS) [9]

rules called "sniffs" to find vulnerabilities in

PHP programs (including object-oriented

programs). It uses PHP built-in functions to

tokenize programs and can automatically

corrects violated coding standards. Visual Code

Grepper (VCG) [13] is a standalone automated

code security review written in Visual Basic. It

consists of a configuration file that aids the

tool to perform checks for insecure functions.

Yet Another Source Code Analyzer (YASCA)

[15] is another PHP-based tool that leverages

other static analyzers, such as PMD [16], to

perform vulnerability scanning. YASCA can

also be used to explore code quality,

performance, and conformance to best

practices.

PHP Security Analysis for Everyone or

phpSAFE [10] is a PHP-based static code

analyzer that identifies vulnerabilities for PHP

plugins using OOP. It conducts lexical and

semantic analysis on the Abstract Syntax Tree

(AST) of a PHP program. Being a memory

hog, phpSAFE is reportedly failing to parse

files that contain large numbers of file-includes

[10]. Pixy [11] is a Java-based analyzer that

utilizes alias and literal analysis to obtain

variable aliases and the literal values that each

may hold at a single point in the program.

Despite its ability to detect vulnerabilities

concerning register_globals, Pixy fails to

analyze object-oriented-featured PHP files [10].

RIPS [12] detects vulnerabilities by modeling

the PHP program using Control Flow Graphs

(CFG) and analyse whether or not potential

vulnerable functions (sensitive sinks) are

influenced by input sources using data-flow

analysis. Although, this PHP-based tool is

reportedly able to analyze programs that

contain large numbers of file-includes, it fails

to analyze object-oriented-featured PHP code

[10]. Web Application Protection (WAP) [14]

is a tool written in PHP that involves detecting

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

- 128 -

and correcting vulnerabilities in PHP programs

using taint analysis and a data mining

procedure.

All the above tools are designed to help

developers automatically detect security flaws

in programs. However, one of the properties of

static analysis technique is detecting all

possible program paths. As some of these

paths may not be used during program

execution, the tools utilizing this technique are

likely to come up with false-positive results.

3. Methodology

This study is an experiment to evaluate the

perfrormance of SAST tools involving TBA

and GBA. The study procedures are discussed

as the following.

3.1 Sampling

The experiment requires a set of 6 test

cases to assess the effectiveness of each tool

to detect XSS vulnerabilities. For this, we

search for real-world vulnerable applications

from the Common Vulnerabilities and

Exposures (CVE) website [2]. From the many

web application reports on the websites with

XSS vulnerabilities, we refine our search of

samples by picking only those that are PHP,

open-source, and contain references to the

proof of concept exploits in the application.

From the refinement, we choose one version

from each sample, thus, acquiring six PHP files

from five different applications as test cases.

3.2 Vulnerable Test Cases

Next, to identify the types of vulnerabilities

that exist in our test cases, we develop a PHP

code that automatically collects all the sinks

(i.e., print, echo, etc.) in the test cases. The
code also categorizes benign sinks (containing

hard-coded literals, such as strings and

integers) as true-negatives. Following Kallin

and Valbuena [17], we identify potentially

vulnerable sinks according to 5 common

injection contexts in which the user input may

be inserted in the code within the application.

The 5 contexts are HTML element content

(HTML), HTML attribute value (Attribute), URL
query value (URL), CSS value (CSS), and
JavaScript value (JS). With the help of

PhpStorm's data flow analyzer, we proceed to

manually inspect each of the sinks individually

to determine whether or not it carries

parameters that originate from vulnerable

sources (i.e., GET, POST, REQUEST, etc.). The
inspection results to a total of 73 possible

sinks or true-negatives, T(tn), and a total of

82 true-positives, T(tp), all of which are used

as our benchmark in analyzing the

effectiveness performance in the next section.

Table 2 shows an overview of the test cases

and the number of vulnerabilities in each as

well as their injection contexts.

DW test case is a file from DokuWiki [18],
an open-source wiki application software that

offers built-in accesscontrols and authentication

connectors for better security, thus, having an

advantage over traditional wiki. This test case

exhibits 2 vulnerabilities, both are in the

2021년 12월 한국소프트웨어감정평가학회 논문지 제17권 제2호

- 129 -

context of HTML. Meanwhile, PMW test case is
a file from PHPMyWind [19], a popular

application software from China that was built

for easy website construction. Although a new

version of the application is available, its

solution for the vulnerabilities in CVE reports

is unknown at the time of writing. In

continuation, this test case contains 2,323 lines

of code with 7 vulnerabilities that are in the

contexts of HTML and attribute.
UPB-1 and UPB-2 test cases are from

Ultimate PHP Board (UPB) [20], a

simple-based forum application software that is

ideal for small websites. It's a text-based

forum that does not utilize MySQL databases

with the hope to provide a faster experience

for its users. UPB-1 is the largest test case
with 5,591 lines of code. It exhibits the highest

counts of 45 vulnerabilities in five common

injection contexts. The other test case, UPB-2,
contains 6 vulnerabilities which are in the

injection contexts of HTML, attribute, and URL.
The vulnerabilities in both test cases that were

reported in CVE have not been fixed at the

time of writing.

The next test cases are acquired from

WordPress plugins. WP-1 is a file from Gift
Certificate Creator [21], a plugin that allows

users to manage gift-certificates in WordPress

applications. This test case has 162 lines of

code and 7 vulnerabilities. Two of the

vulnerabilities is in the context of HTML, while

ID CVE Application Name Version File Name *LOC
Vuln.

Sinks
Context

DW
CVE-2017

-12583
DokuWiki

2017-02-

19b
doku.php 591 2 HTML- 100.0%

PMW
CVE-2017

-12984
PHPMyWind 5.3

admin/message_

update.php
1,850 7

HTML - 42.9%
Attribute - 57.1%

UPB-1
CVE-2015

-2217
Ultimate PHP Board 2.2.7 profile.php 6,189 45

HTML - 48.9%
Attribute - 20.0%
URL - 17.8%
CSS - 6.7%
JS - 6.7%

UPB-2
CVE-2015

-2217
Ultimate PHP Board 2.2.7 search.php 5,450 6

HTML - 50.0%
Attribute - 16.7%
URL - 33.3%

WP-1
CVE-2017

-1002017

Wordpress

gift-certificate-creator
1.0

giftcertificates.php
162 7

HTML - 28.6%
Attribute - 71.4%

WP-2
CVE-2012

-5229

Wordpress Slideshow

Gallery 2
1.1.4 css/gallery-css.php 634 14 CSS 100.0%

*LOC covers include files

Table 2. An Overview of the Vulnerable Application Test Cases

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

- 130 -

the other five are in the context of attribute.
WP-2 test case is a file from Slideshow

Gallery Pro [22], a plugin to enable display of

multiple galleries in the WordPress site. This

test case consists of only 24 lines of code -

the smallest file amongst all test cases. All the

vulnerabilities in this test case is in the

context of CSS value. The reported

vulnerabilities in WP-2 have not been fixed at
the time of writing. Meanwhile, we could not

obtain any information regarding the fixes for

WP-1.

3.3 Characteristics of Static Analysis

Security Testing Tools

Prior to performing the analysis, we first

examine the characteristics of the tools based

on the data-flow analysis methods. This is to

ensure that they implement

inter-procedural-based analysis, and conduct

flow-, context- and path-sensitive analysis.

Therefore, to determine this, we create several

tests and examine the outputs from each tool.

The inter-procedural analysis allows

operation between caller and callees throughout

an entire program and in the correct sequence

[23]. Therefore, the test is to check whether

the analysis tools' operation can flow to and

from calls in sequence, e.g, procedure calls.

Context-sensitivity, on the other hand, allows

the operation to recognize the dependent

behavior of procedures based on the calling

context i.e., call strings or assumption sets

[24]. Therefore, the test is to ensure that the

analysis tools' operation can differentiate

between different calls to the same procedures

in the correct order. We create and deploy two

test cases for this purpose.

Next, flow-sensitivity allows the operation to

regard the control-flow and to compute which

statement each variable points to at every

program point. The test for flow sensitivity

would, thus, check that the analysis tools'

operation regards the order of the executed

statements that are being executed. We create

four test cases for testing flow-sensitivity.

Lastly, as path sensitivity analysis considers

flow-sensitivity and computes information at

every probable execution path, the test is to

check that the analysis tools' operation can

differentiate the information of variables

between different conditional statements and

identify improbable paths. We create two test

cases for testing path-sensitivity.

Data-flow analysis operates on control-flow

graphs of a program and does not lend itself to

tools using text-based vulnerability search.

Therefore, it is excluded from the sensitivity

test. Only GBA tools are evaluated instead.

The next section presents the results of this

experiment.

3.4 Testing Sensitivity

We next continue with testing to determine

the the sensitivity traits of the tools.

The flow-sensitive tests involve four test

cases. The first one consists of a

user-controlled value stored in the vulnerable

GET method that is assigned to a variable,
$vuln_source. Next is the variable

2021년 12월 한국소프트웨어감정평가학회 논문지 제17권 제2호

- 131 -

dreassigned to a new variable, $x. This new
variable is later assigned an invulnerable static

string value, which is then printed out using

PHP's function, echo. The second is an

object-oriented-structured PHP test that

consists of three PHP classes named Safe1,
Vuln, and Safe2. The Safe1 and Safe2 classes
contain a function with the same name as the

class that accesses the non-static property

model and assigns invulnerable static strings to

it. On the other hand, the function in the Vuln
class assigns a vulnerable value from the GET
method to the property model. Using the new

keyword, instances of the three classes, Safe1,
Vuln, and Safe2, are created and are stored in
the variables $x, $y, and $z each, enabling
them to access the same instance as the object

that was assigned to it. These variables are

then reassigned to the instantiated variables

$y, $z, and $x, respectively, making the

variables $x and $z instances of the Vuln
class. The three variables are next printed out

using PHP's function, echo.
The third test is similar to the previous test,

except that it is not an object-oriented-

structured code. Instead of functions embedded

in classes, we created variables $x, $y, and $z
and assigned them the values of 1, a GET
method, and 2, respectively. Similar to the
previous test, the variables are then reassigned

to the values that are contained in the

variables $y, $z, and $x and printed out. The
last test contains a variable $x, that is
assigned to the value of the vulnerable GET
method. Then, based on if the $x variable is
set, the variable is reassigned to the value of

an empty string. Otherwise, the $x variable,
which is now vulnerable, is first printed out

and only then is reassigned to an empty string.

Finally, the safe empty string is printed out.

As for the context-sensitive tests, there are

two test cases involved. The first one starts

with an inclusion of an external file, containing

a function, id, that simply returns the

parameter that is given to it. Then, the

vulnerable GET method is assigned to the

variable $vuln. The id function is next called
twice, feeding it with the parameters $vuln
and 1, each. The values that are

simultaneously returned from the function are

then assigned to the variables, $vuln_copy
and $safe, each. Lastly, only the variable
$safe is printed out. The second test is

similar to the first test, except that the order

of the function call is reversed.

For path-sensitive tests, there are two test

cases. The first one consists of a variable

$cond being assigned the boolean, true. Then,
based on if the value of the variable $cond is
true, the variable $y is assigned the static
string safe and is assigned the value of the
vulnerable GET method, otherwise. Based on
the same condition, the variable, $y is printed
out. The second test is different after the if
and else clause, where the $cond variable is
reassigned the value of false. Then, prints
out $y if $cond is true and prints out an
empty string, otherwise.

3.5 Testing Procedure

The Linux-compatible tools (i.e., PHPCS,

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

- 132 -

phpSAFE, Pixy, RIPS, and WAP) are installed

on a 32-bit Ubuntu 16.04 LTS machine with a

1.9GB Memory and a 3.29 GHz Intel Core i5

650 processor. We use PHP version

7.0.29-1+ubuntu16.04.1+deb.sury.org+1, Apache

version 2.4.18 server, and Mozilla Firefox

version 59.0.2. Whereas, the Windows-

compatible tools (i.e., VCG and YASCA) are

installed on a 32-bit Windows 7 Enterprise

machine with a 2.00 GB Memory and a 2.93

GHz Intel® Core™2 Duo processor. We use

PHP version 7.1.8 and Apache version 2.4.27

(Win32) server.

Although various tools have different

configurations to perform analyses, we choose

the tools' default configuration with the

following additional settings (if not already set

by default): (1) analysis on a single PHP file

and, (2) search for XSS vulnerabilities only.

We also create a new folder for each test case

inclusive of their file includes because; (1)

YASCA can only perform analysis on

directories, so as to imitate an analysis on a

single file and, (2) to avoid bias for the tools

that do not implement inter-procedural-based

analysis (i.e., TBA tools) as well as for

investigating the analysis run time for each

tool. Additionally, we configure RIPS' verbosity

level to "show secured +1,2" that shows all

possible potentially vulnerable function calls.

Furthermore, to analyze the analysis run time

performance for each tool to complete a

detection task per test case, we place a timer

(if not already present), that reports the time

taken in milliseconds rather than in seconds, at

the start and end of the main analysis function

of each analysis tool.

To proceed with the experiment, we feed, as

inputs, the test cases' file path to the tools in

turn. In the first phase, we collect, from each

tool, the analysis results for each test case, the

detected vulnerable sink, their respective line

numbers, and the average analysis time, based

on five runs, to complete the analysis.

Next, from these results, we count the total

number of detections for each tool for all test

cases. Some of the analysis tools, such as

YASCA, report vulnerabilities through line

numbers, and not the variables used in possible

vulnerable sinks. Although this would

disregard the ability of the other tools to detect

potential harmful variable use in sinks, but for

uniformity, we decide to count the number of

detections for each tool based on the respective

line numbers. We, then, compare the detections

to our benchmark from the previous subsection

and catalog them on whether they are true

vulnerabilities (i.e., true-positives) or benign

variables used as parameters to output

functions (i.e., false-positives).

4. Analysis and Results

As static analysis evaluates all possible

paths, we infer that when the size of the

applications increases, so is the time to

complete an a an analysis. In continuation, a

decent analysis tool is measured based on its

capability to precisely detect vulnerabilities

within an acceptable time. Following is the

discussion of our analysis results.

2021년 12월 한국소프트웨어감정평가학회 논문지 제17권 제2호

- 133 -

4.1 Sensitivity Traits

To address our first research question: do

the tools’ implementation include

sensitive-based analysis?, we present the test

results in Table 3. The analysis results of a

tool’s sensitivity traits, based on whether or

not it performs inter-procedural, flow-,

context- and path-sensitive analyses, is shown

in. Table 3. A tool shows sensitivity for the

correct vulnerability report (labeled with √) of

potentially harmful variables to sinks.

Analysis Tool
Tests for Sensitivity

F1 F2 F3 F4 C1 C2 P1 P2

PhpSAFE √ √ √ √

Pixy √ √ * √ √ √

RIPS √ √ * √ √ √ √

WAP √ √ √ √ √

*Tool does not support analysis for object-oriented structure

Table 3. Sensitive Decisions For Each Tool

Most of the tools show flow-sensitivity for

F1 and F2, but not for F3. phpSAFE sets

function return values to null for those
without a return statement, and consequently,

would analyze them as safe. Similarly, WAP

maintains the function to be untainted if no

return statements exist at the end of the

function. Moreover, WAP's operation does not

include member access in objects or class

instances (e.g., $y->model). Alternatively,
Pixy and RIPS do not support object-oriented

based programming structure, thus, we could

assess their sensitivity for this trait. Next, for

F4, phpSAFE and WAP again fail by

incorrectly report vulnerabilities. This is

because they consider the last assignment to

the variables used in sinks.

Other than flow sensitivity, implementing

path sensitivity in analysis tools is a complex

procedure. Table 3 shows that all the tools fail

for P1, but pass for P2, except Pixy. Many of

the existing SASTs, including Pixy, would

combine the output values of conditional

control flows to report potential vulnerabilities

and, therefore, may not be precise. On the

other hand, Pixy fails for P2 because it

mainly analyzes whether values originating

from input sources are included in the sink of

a program. Meanwhile, phpSAFE and WAP

both report vulnerabilities for P1 due to the

same reason they fail for F4. Interestingly,

RIPS incorrectly reports vulnerabilities for P1,

but not for F4 because, in the latter test, it

would analyze the if block first, which would
execute $x="" and then only analyze the else
block, which prints out a safe variable.

Lastly, all but phpSAFE show context-

sensitivity traits. For optimization and memory

consumption purposes, phpSAFE parses

functions only once during the function's first

call, taking into account the context

(parameters, global variables, scope, etc.) of the

call. For this reason, it fails for C1. To clarify,

because it analyzes the return value of the first

call to the id function with the parameter
$vuln as tainted, the next call to the same
function with parameter, 1, would also be
analyzed as tainted.

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

- 134 -

4.2 Effectiveness

To answer the second research question: are

the tools’ XSS vulnerability detections true or

false?, and the third research question: what is

the probability of a tool missing true

vulnerabilities?, we assess the effectiveness of

each tool in detecting XSS vulnerabilities of

each test case based on the total counts of: (1)

detections, C(d), or reports of potentially

vulnerable sinks, (2) true-positives, C(tp), or

detected vulnerabilities that are real vulnerable

sinks, (3) false-positives, C(fp), or invulnerable

sinks that are reported as vulnerable, and (4)

false-negatives, C(fn), or missed vulnerabilities.

To compute the probabilities of detection,

P(d), false-positive, P(fp), and false-negative,

P(fn), for each tool, we use the following

formulae:

P(d) = C(d) / T(d) (1)

P(fp) = C(fp) / T(tn) (2)

P(fn) = C(fn) / T(tp) (3)

where, T(d) is the total number of possible

detections for a test case. The results of the

computation are as in the following.

The assessment of effective detections is

carried out in reference to the production of

two types of false reports: false-positives and

false-negatives.

4.2.1 False-positives

Table 4 shows the probabilities of detection,

true-positive and false-positive for each tool,

the result of which is used to construct a

graph similar to a Receiver Operating

Characteristic (ROC) curve, that presents the

performance of each tool in terms of the

probability of detection, P(d), against the

false-positive, P(fp), as shown in Fig. 1.

Analysis Tool P(d) P(fp)
PHPCS 0.484 0.080

VCG 0.355 0.091

YASCA 0.968 0.453

phpSAFE 0.123 0.105

Pixy 0.200 0.032

RIPS 0.245 0.000

WAP 0.006 0.000

Table 4. The Probabilities of Detection and
False-positive of the Tool

Fig. 1. The Detection Against False-positive
Probabilities of the Tools

The diagonal line is the baseline

representing a naïve analysis tool that

randomly guesses the results of any

performance by which P(d) = P(f) and P(tp) =

P(f). The target of a decent analysis tool is to

either have an operating point in the

2021년 12월 한국소프트웨어감정평가학회 논문지 제17권 제2호

- 135 -

upper-left-hand corner, or above the diagonal

line in the graph. As the figure shows, all

analysis tools satisfy the latter and not the

former target. By our observation, the TBA

tools show higher detection probabilities

compared to that of the GBA tools. YASCA

charts the highest false-positive probability

among the TBA tools. As for GBA tools, RIPS

shows the highest detection probibility with nil

false-positives, followed by Pixy, but with a

slightly higher false-positive probability. Lastly

the detection probability for phpSAFE and

WAP are lesser and somewhat proportional to

their false-positive probability.

In this part of our study, we analyze if a

tool can possibly miss detecting a vulnerability.

Table 5 shows the performance of each tool in

detecting 82 true vulnerabilities present in all

test cases. Interestingly, TBA tools show lower

false-negative probabilities (0.00-0.40)

compared to GBA tools (0.54-0.99). While,

YASCA present nil false-negatives, PHPCS

and VCG present a probability of more than

0.15 and less than 0.40, each. Pixy and RIPS of

the GBA tools, appear with more than half

false-negative probabilities, whereas phpSAFE

and WAP both show high false-negative rates,

with 0.79 and 0.99, each.

TBA Tools PHPCS VCG YASCA

P(fn) 0.159 0390 0.000

GBA Tools phpSAFE Pixy RIPS WAP

P(fn) 0.792 0.634 0.537 0.988

Table 5. Probabilities of the Tools Producing
False Negatives

4.2.2 Precision, Recall and F-Score

To answer the fourth research question: how

do the tools perform in terms of precision,

recall and F-Score?, we assess the

performance of each tool as shown in Table 6.

Precision measures exactness, which is the

fraction of the detections classified as truly

positive, whereas recall measures completeness,

which is the fraction of detected valid

vulnerabilities against all valid vulnerabilities.

The F-score measures the harmonic balance

between precision and recall. Below shows the

corresponding formulae:

Precision = C(tp) / (C(tp) + C(fp)) (4)

Recall = C(tp) / (C(tp) + C(fn)) (5)

F = 2 * (Precision * Recall) /

(Precision + Recall) (6)

TBA Tools PHPCS VCG YASCA

F-score(%) 0.654 0.578 0.692

GBA Tools phpSAFE Pixy RIPS WAP

F-score(%) 0.321 0.455 0.510 0.027

Table 6. Measures of F-Score For Each Tool

Fig. 2 shows a Precision-Recall (PR) space

to indicate that all tools, except YASCA, chart

an operating point above the diagonal line. For

the TBA tools, PHPCS indicates high

probability of showing both precision and

recall, while VCG shows high precision but

with a slighly lower recall, In contrast,

YASCA shows high recall but low precision.

In the GBA tools, PhpSAFE, Pixy, and RIPS

show high precision with less than half the

probability of recall. Lastly, WAP shows high

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

- 136 -

precision but with a low recall. Table 6 shows

the F-score for each tool. YASCA shows the

highest probability among all tools with about

0.7, while RIPS shows the highest probability

(0.5) for GBA tools.

Fig. 2. The Probability of Precision Against Recall For
Each Tool

Tools with high precision (i.e., GBA tools)

can be used to minimize false alarms in the

detection vulnerabilities. Alternatively, tools

with high recall (i.e., YASCA) can be used

when the detection of all possible

vulnerabilities is of importance whereby the

developers are willing to manually inspect

those that may be benign. For developers that

are searching for a tool with balanced precision

and recall, we suggest YASCA, PHPCS, or

combining TBA with GBA tools for a more

optimal result.

4.3 Analysis Runtime

For our fifth research question:how long do

the tools take to complete analyses on test

cases?., we present the results of the time

duration for each tool to complete analyses of

the applications in sizes set in a descending

order, as shown in Fig. 3.

Fig. 3. The Average Analysis Runtime for
Each Tool

In the large test case applications, namely,

UPB-1, UPB2, and PMW, the TBA tools take

an average of less than 10 seconds to complete

analyses. Whereas, WAP of the GBA tools,

takes less than a second to complete analyses

on all test cases, to come up as the fastest

tool, regardless of application size. RIPS and

phpSAFE, on the other hand, take similar time

as TBA tools to complete analyses for large

test cases. However, although Pixy, takes an

average time to analyze test case PMW, it

requires significantly more time with more

than a minute to analyze the other two larger

test cases.

For the three smaller test cases, WP-2, DW,

and WP-1, the TBA tools, VCG and PHPCS,

less than a second to complete analyses, while

YASCA takes more time with slightly more

than a second. As for GBA tools, RIPS takes a

2021년 12월 한국소프트웨어감정평가학회 논문지 제17권 제2호

- 137 -

significantly short time to analyze these test

cases, except for DW, with less than 100

milliseconds. It takes less than a second for

RIPS to analyze test case DW, a similar time

taken for WAP, phpSAFE, and the TBA tools

to analyze the smaller test cases. Pixy,

however, requires more than a second to

complete analyses on these test cases.

To sum up, the detection probability of TBA

tools are higher than that of GBA tools, but

with higher probability of false-positives. In

contrast, although GBA tools have a lower

probability to produce false-positives, they

have higher chances of producing

false-negatives. In general, all tools show high

precision (except YASCA), but TBA tools

show higher recall compared to that of GBA

tools. Additionally, text-based tools tend to

have a balance between precision and recall

compared to GBA tools. Meanwhile, RIPS is

the only GBA tool to show harmonic balance

between precision and recall. Lastly, the time

duration to complete analyses is not dependant

on a tool’s vulnerability search type. However,

all the tools complete analysis in an acceptable

time (i.e., within one minute) for most of the

test cases.

5. Evaluation and Discussion

Our comparative analysis results show that

the relation of analysis tools between their

detection probability is somewhat directly

proportional to their false-positives probability.

However, the detection probability is indirectly

proportional to their false-negative rates.

In having a high detection probability, TBA

tools would fare better in detecting possible

vulnerable sinks. Contrastingly, GBA tools

would fare better in detecting sinks that are

truly vulnerable.

TBA tools, which typically use

regular-expressions to parse data, have the

advantage of expressiveness in detecting

recurrent patterns and information [27], which

may be the reason for their higher probability

in vulnerability detection. Meanwhile, the

performance for GBA tools are possibly

dependent on their sensitivity trait. In having

these traits would help them in detecting real

vulnerabilities. In turn, their probability of false

reports may be caused by imprecise

approximation of temporal variable properties

or runtime information manipulation or

validation [28].

Next, the results also show that most

analysis tools' goal is to achieve either

precision or recall. This is related to the

trade-offs between false-positive and

false-negative rates [26]. From Eq. (4) and (5),

precision is related to the proportion of

detections obtained (i.e., consists of either

true-positive or false-positive results) that are

classified as truly positive, whereas recall is

related to the proportion of all true

vulnerabilities (i.e., consists of either

true-positive and true-negative results) that

are misclassified as invulnerable. A previous

study discovered that based on both theoretical

and empirical evidence, that, the trade-offs

between precision and recall are inherent. An

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

- 138 -

improvement in precision would decrease the

true-positive counts, having a negative effect

on recall. At the same time, an improvement to

recall would decrease the number of

false-positive counts, thus lowering the

precision [31].

Additionally, there is an indirect relationship

between false-positive and false-negative rates.

According to Rice's theorem, which states that

any non-trivial property of the language

recognized by a Turing machine is undecidable

[29]. This suggests that it is impossible to

decide any program property without solving

the halting problem. Hence, in practice, SAST

tools can only perform analysis through

approximation, which ramifies that the analyses

are, inevitably, either sound but incomplete or

complete but unsound. An analysis tool is

sound if, given a set of assumptions, it reports

all errors, or in our case, vulnerabilities, thus,

no false-negatives, but it is possible that the

reports are false. An analysis tool is unsound if

it tries to reduce false-positives at the cost of

producing false-negatives [30]. This suggests

that it may not be possible to create a perfect

SAST tool, but, it is possible to create a useful

one.

However, based on our results, it is also

clear that it is not impossible to satisfy both

measures, regardless of the types of analysis

used, which is the case for RIPS. It has been

previously stated that, although trade-off

between precision and recall are inevitable [31],

it is possible to improve both measures

simultaneously [31]. This can be done by

performing a multi-stage procedure, in which

an improvement of one measure of an analysis

can be done by using a retrieved set of a

subsequent measure. Belyaev et al.

implemented this idea by improving the

precision of an analysis by filtering out

false-positives after performing one stage of

the analysis, thus having no impact on recall

[32].

Most TBA tools, except for YASCA, show

faster analysis time compared to GBA tools.

TBA tools commonly implement

regular-expression-based parsing, whereas

GBA tools commonly implement context-free

grammar-based parsing [33]. Context-free

grammar parsing operates recursively, where it

repeatedly invokes mechanisms and method

calls. This can be expensive in both processor

time and memory space. On the contrary,

regular-expression parsing operates iteratively

and normally occurs within a method so the

overhead of repeated calls and extra memory

assignment is omitted [27]. This supports our

finding for some TBA tools (in exception to

PHPSAFE and YASCA) which is able to

perform faster compared to GBA tools in

detecting XSS vulnerabilities.

Finally, based on the results of sensitivity

decisions used by analysis tool authors, there

may be a relation between flow- and

context-sensitivity with precision and also

context-sensitivity with analysis completion

time. Several studies have suggested that

flow- and context-sensitivity can be used to

greatly improve precision [23]. However, our

results cannot clearly explain the relationship

between path-sensitivity and other measures.

2021년 12월 한국소프트웨어감정평가학회 논문지 제17권 제2호

- 139 -

6. Related Work

Past works on the use of open-source static

software analysis have viewed on several

issues. Torri et al., for example, evaluated

open-source static software analysis in

embedded softwares and discovered that a

majority of the tools are not applicable to

embedded systems due to their poor

performance in detecting software bugs [39].

We take note of this evaluation as it provides

a motivation to our research, whereby there

are yet limitations that exist in current static

code analysis tools. On the other hand, the

work by Zitser et al. was to perform a

comprehensive evaluation of SAST tools to

detect buffer overflows in the source code. In a

way, their use of probabilities of detection and

false-positive as a performance measure for

five SAST tools and present them in a kind of

ROC curve in the work is interesting to us

[25]. As their work is closest related to ours in

evaluating SAST tools, we used the same data

model in our research. The significance of our

work from theirs is that we evaluate SAST

tools that detect XSS rather than buffer

overflow vulnerabilities and extend our

performance measure to include precision,

recall, and analysis runtime.

In yet another study, Baset and Denning

reviewed the use of IDE plugins to detect

security vulnerabilities in codes and found that

most plugins lack information on vulnerability

checks that may degrade their detection

accuracy. They found that most plugins lack

information on vulnerability checks and may

degrade their detection accuracy is information

of importance to our reference in our use of

analysis [40]. Suto analyzed the accuracy and

the runtime of web application scanners in

detecting vulnerabilities [41]. His work is

indeed helpful to our task of looking at the

same issue in SAST tools that are capable of

detecting XSS vulnerabilities in this study. The

work of Alsaleh et al. that presented a

comparative evaluation of on web application

vulnerability scanners to assess their security

features and performance does provide us with

a key to our attempt at evaluating SAST tools.

Nevertheless, we conducted an evaluation of

the same key features of SAST tools rather

than web scanners [42], specifically those that

detect XSS vulnerabilities.

Antunes et al. compare the effectiveness of

penetration testing tools and static code

analysis tools to detect SQL injection

vulnerabilities. Their results show that the

latter outperforms the former in terms of

vulnerability coverage [42]. Their following

work surveys the challenges in vulnerability

detection tools in Service-Oriented

Architectures (SAOs). This study aims to

provide service providers with potential ways

to improve the detection of security

vulnerabilities in SOAs using effective

methodologies and tools [44]. Their work is

helpful to our study of achieving a similar aim

which is to help prevent XSS vulnerabilities.

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

- 140 -

7. Conclusion and Future Work

This paper presents our assessment of the

performance of analysis tools in terms of their

effectiveness to detect XSS vulnerabilities as

well as their total time to complete an analysis

on six test cases. We observed that PHPCS

showed the highest detection counts of more

than 50% of the total vulnerabilities. In the

nutshell, its detection drew on 60%

true-positive and about 20% false-positives. In

terms of effectiveness, PHPCS recorded 80%

precision and 50% recall, while YASCA

recorded the highest measure of F-Score.

Notably, text-based analysis tools took a

shorter time to complete analyses compared to

graph-based analysis tools. The limitations to

our research that can be conveyed as future

work are (1) we did not include evaluations for

analysis tools that can correct vulnerable

programs and, (2) we did not include

evaluations for the type of injection contexts

the analysis tools are able to detect. Our

evaluation of SAST tools in detecting XSS

vulnerabilities should provide more insight,

especially to developers to help make

improvements for a more effective and fast

analysis tool.

References

[1] "Vulnerability distribution of cve security
vulnerabilities by types", https://www.
cvedetails.com/vulnerabilities-by-types.php,
Accessed: Oct. 10, 2017.

[2] "CVE - Search Results", https://cve.mitre.
org/cgi-bin/cvekey.cgi?keyword=XSS,
Accessed: Oct. 10, 2017.

[6] OWASP, "Source Code Analysis Tools -
OWASP", URL: https://www.owasp.org/
index.php/Source_Code_Analysis_Tools,
Accessed: Feb. 24, 2018.

[8] Floe, "Phpcs-security-audit", URL: https://
github.com/FloeDesignTechnologies/phpcs-
security-audit,

[9] Bob, "CodeSniffer Part 4: How does
CodeSniffer Work | King Kludge", URL:
http://www.kingkludge.net/2009/02/codesnif
fer-part-4-how-does-codesniffer-work/,
Accessed: Feb. 19, 2018.

[10] Paulo Nunes, José Fonseca, and Marco
Vieira, "PhpSAFE: A Security Analysis
Tool for OOP Web Application Plugins",
Proc. Int. Conf. Dependable Syst. Networks,
vol. 2015-Septe, pp. 299-306, 2015. DOI:
http://doi.org/10.1109/DSN.2015.16

[11] Nenad Jovanovic, C. Kruegel, and E. Kirda,
"Pixy: a static analysis tool for detecting
Web application vulnerabilities", in 2006
IEEE Symp. Secur. Priv., 2006, pp. 6 pp. -
263. DOI: http://doi.org/10.1109/SP.2006.29

[12] Johannes Dahse, "RIPS-A static source
code analyser for vulnerabilities in PHP
scripts", Retrieved Febr., vol. 28, p. 2012,
2010.URL: http://www.nds.rub.de/media/nds
/attachments/files/2010/09/rips-paper.pdf

[13] Nick Dunn and John Murray, "Visual Code
Grepper".URL: https://github.com/nccgroup/
VCG

[14] Ibéria Medeiros, Nuno F. Neves, and Miguel
Correia, "Automatic detection and correction
of web application vulnerabilities using data
mining to predict false positives", in Proc.
23rd Int. Conf. World wide web - WWW
'14, 2014, pp. 63-74. DOI: http://doi.org/
10.1145/2566486.2568024

[15] Michael V. Scovetta, "Yasca: Yet Another
Source Code Analyzer".URL: http://scovetta.
github.io/yasca/

2021년 12월 한국소프트웨어감정평가학회 논문지 제17권 제2호

- 141 -

[16] "PMD", URL: https://pmd.github.io/,
Accessed: Feb. 19, 2018.

[17] Jakob Kallin and Irene Lobo Valbuena,
"Excess XSS: A comprehensive tutorial on
cross-site scripting", URL: https://excess-
xss.com/, Accessed: Mar. 22, 2017.

[18] Andreas Gohr and DokuWiki, "DokuWiki",
URL: https://github.com/splitbrain/dokuwiki

[19] "PHPMyWind",URL: http://phpmywind.com/
[20] PHP Outburst, "Ultimate PHP Board". URL:
https://github.com/PHP-Outburst/MyUPB

[21] Bobcares, "Gift Certificate Creator", URL:
https://wordpress.org/plugins/gift-certificat
e-creator/,

[22] Robot with Emotions, "Slideshow Gallery
Pro - WordPress Plugins", URL: https://
wordpress.org/plugins/slideshow-gallery-pr
o/, Accessed: Feb. 13, 2018.

[23] Alfred V. Aho, Monica S. Lam, Ravi Sethi,
and Jeffrey D. Ullman, "Compilers:
Principles, Techniques, and Tools", 2006.
ISBN: 978-0321486813, 2006.

[24] Flemming Nielson, Hanne R. Nielson, and
Chris Hankin, "Principles of Program
Analysis", Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999. DOI: http://doi.org/
10.1007/978-3-662-03811-6

[25] Misha Zitser, Richard Lippmann, and Tim
Leek, "Testing static analysis tools using
exploitable buffer overflows from open
source code", ACM SIGSOFT Softw. Eng.
Notes, vol. 29, no. 6, p. 97, 2004. DOI:
http://doi.org/10.1145/1041685.1029911

[26] Nurul. Atiqah. A. Talib and Kyung-Goo
Doh, "Assessment of dynamic open-source
cross-site scripting filters for web
application", KSII Trans. Internet Inf. Syst.,
vol. 15, no. 10, pp. 3750-3770, 2021. DOI:
http://doi.org/10.3837/tiis.2021.10.015

[27] Davide Pasetto, Fabrizio Petrini, and Virat
Agarwal, "Tools for very fast regular
expression matching", Computer (Long.
Beach. Calif)., vol. 43, no. 3, pp. 50-58, 2010.
DOI: http://doi.org/10.1109/MC.2010.80

[28] Yao-Wen Huang, Fang Yu, Christian Hang,
Chung-Hung Tsai, Der-Tsai Lee, and
Sy-Yen Kuo, "Securing web application
code by static analysis and runtime
protection", Proc. 13th Conf. World Wide
Web - WWW '04, p. 40, 2004. DOI:
http://doi.org/10.1145/988672.988679

[29] H. G. Rice, "Classes of recursively
enumerable sets and their decision
problems", Trans. Am. Math. Soc., vol. 74,
no. 2, pp. 358-358, 1953. DOI: http://
doi.org/10.1090/S0002-9947-1953-0053041-6

[30] Brian V. Chess and Gary E. McGraw,
"Static analysis for security", IEEE Secur.
Priv., vol. 2, no. 6, pp. 76-79, 2004. DOI:
http://doi.org/10.1109/MSP.2004.111

[31] Michael Buckland and Fredric Gey, "The
relationship between Recall and Precision",
J. Am. Soc. Inf. Sci., vol. 45, no. 1, pp. 12-19,
Jan. 1994. DOI: http://doi.org/10.1002/(SICI)
1097-4571(199401)45:1<12::AID-ASI2>3.0.C
O;2-L

[32] Mikhail Belyaev and Vladimir Itsykson,
"Fast and Safe Concrete Code Execution for
Reinforcing Static Analysis and
Verification", Model. Anal. Inf. Syst., vol. 22,
no. 6, pp. 763-772, Jan. 2016. DOI:
http://doi.org/10.18255/1818-1015-2015-6-76
3-772

[33] Görel Hedin, "Compiler Construction", vol.
9031, 2015. DOI: http://doi.org/10.1007/978-
3-662-46663-6

[39] Lucas Torri, Guilherme Fachini, et al., "An
evaluation of free/open source static
analysis tools applied to embedded
software", in 2010 11th Lat. Am. Test
Work., Mar. 2010, pp. 1-6. DOI:
http://doi.org/10.1109/LATW.2010.5550368

[40] Aniqua Z. Baset and Tamara Denning, "IDE
Plugins for Detecting Input-Validation
Vulnerabilities", 2017. DOI: http://doi.org/
10.1109/SPW.2017.37

[41] Larry Suto, "Analyzing the Accuracy and
Time Costs of Web Application Security

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

- 142 -

Scanners", 2010. Accessed: Sep. 22, 2017.
URL: https://www.beyondtrust.com/wp-
content/uploads/Analyzing-the-Accuracy-a
nd-Time-Costs-of-Web-Application-Securi
ty-Scanners.pdf

[42] Mansour Alsaleh, Noura Alomar, Monirah
Alshreef, Abdulrahman Alarifi, and
AbdulMalik Al-Salman, "Performance-
Based Comparative Assessment of Open
Source Web Vulnerability Scanners", Secur.
Commun. Networks, vol. 2017, pp. 1-14,
2017. DOI: http://doi.org/10.1155/2017/
6158107

[43] Nuno Antunes and Marco Vieira,
"Comparing the Effectiveness of Penetration
Testing and Static Code Analysis on the
Detection of SQL Injection Vulnerabilities in
Web Services", in 2009 15th IEEE Pacific
Rim Int. Symp. Dependable Comput., Nov.
2009, pp. 301-306. DOI: http://doi.org/
10.1109/PRDC.2009.54

[44] Nuno Antunes and Marco Vieira, "Security
Testing in SOAs: Techniques and Tools BT
- Innovative Technologies for Dependable
OTS-Based Critical Systems: Challenges
and Achievements of the CRITICAL STEP
Project", D. Cotroneo, Ed. Milano: Springer
Milan, 2013, pp. 159-174. DOI:
http://doi.org/10.1007/978-88-470-2772-5_12

Authors

Nurul Atiqah Abu Talib

2009-2013 BIT (Hons) in Computer
System Security from
Universiti Kuala Lumpur,
Malaysian Institute of
Information Technology
(MIIT), Malaysia

2013.9-present Ph.D candidate in the
Department of Computer
Science and Engineering
at Hanyang University
ERICA, Gyeonggi-do,
South Korea

<Research interests> Web Security,
Machine Learning, Program Analysis

Kyung-Goo Doh

1980 B.S. degree, Industrial Engineering
from Hanyang University

1987 M.S. degree, Computer Science from
Iowa State University

1992 Ph.D. degree in Computer Science
from Kansas State University

1993-1995 Assistant Professor,
University of Aizu, Japan

present Professor, Department of
Computer Science, Hanyang
University ERICA

<Research interests> Programming
Languages, Program Analysis, Software
Engineering, Software Security

